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A pair (A, B) of events in a classical probability measure space (�,p) is called ex-
changeable iff p(AB) = p(AB). Conditionally identical common cause system of size n
for the correlation is an n-partition of � such that (i) any member of the partition screens
the correlation off and (ii) for any member {Ci}i∈I of the partition p(A|Ci ) = p(B|Ci ).
The common cause system is called proper if p(A|Ci ) �= (A|Cj ) for some i �= j . In the
paper it is shown that exchangeable correlations be explained by proper conditionally
identical common cause systems in the following sense. (i) Given a proper conditionally
identical common cause system of size n for the two events A and B in �, then the pair
(A, B) will be an exchangeable (positively) correlating pair. (ii) Given any exchange-
able (positively) correlating pair of events in � and given any finite number n > 2, then
the probability space can be embedded into a larger probability space in such a way
that the larger space contains a proper conditionally identical common cause system of
size n for the correlation.
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1. INTRODUCTION

Let S be a pair of spin- 1
2 particles prepared in the singlet state |�s〉 in the

usual EPR experimental setup. Let p(A1) denote the probability that the spin
measurement on particle 1 in direction a yields the result +1 and let p(A1) denote
the probability that the measurement on particle 1 in direction a yields the result
-1. Let p(B2) and p(B2) be defined in a similar way for particle 2 in direction b.
For the joint probability p(A1B2) quantum mechanics predicts

p(A1B2) = 1

2
sin2 1

2
(π − �a,b)
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where �a,b denotes the angle between the two measuring directions. Since p(A1)

and p(B2) are both 1
2 , the correlation

Corrp(A1, B2) = p(A1B2) = p(A1)p(B1)

will be positive if �a,b ∈ [0, π
2 ), negative if �a,b ∈ (π

2 , π ] and zero (that is

A1 and B2 are independent) if �a,b = π
2 .

Since spin is a two-valued observable and the experimental setup has axial
symmetry (that is p(A1B2) depends solely on the the angle �a,b between the two

measuring directions) we get the same result for the joint probability p(A1, B2)
that is

p(A1B2) = 1

2
sin2 1

2
(π − �a,b)

Since Corrp(A1, B2) = Corrp(A1, B2), the sign of Corrp(A1, B2) will depend on
the value of �a,b just as before.

Here in the paper we disregard the special quantum mechanical details of
the EPR experiment, rather we concentrate on two general features of the spin
measurement. The one is the symmetry property

p(A1B2) = p(A1B2)

which we later call exchangeability, the other feature is simply the sign of the
correlation.

In Section 2 we define the notions of Reichenbachian common cause and
Reichenbachian common cause system, respectively as the most promising can-
didates for a common-cause-type explanation of such correlating events which
do not influence each other causally. In Section 3 exchangeability will be defined
and some motivations will be given from a subjectivist account of probability.
Then the Hypothesis of Conditionally Identical Probabilities will be put forward
as a causal explanation of exchangeable correlating pairs of events. In Section 4
we state and prove our main propositions concerning the necessary and suffi-
cient condition of a conditionally-identical-common-cause-type explanation of
an exchangeable correlation. In the Conclusions the metaphysical status of the
Hypothesis of Conditionally Identical Probabilities will be discussed.

2. REICHENBACHIAN COMMON CAUSES
AND COMMON CAUSE SYSTEMS

Let (�,p) be a classical probability measure space and let A,B ∈ � be two
positively correlating events, i.e.

p(AB) > p(A)p(B) (1)
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and let the quantity

Corrp(A,B) ≡ p(AB) − p(A)p(B)

be called the correlation of A and B in (�,p).
In (1956) Reichenbach defines the common cause of the correlation as fol-

lows:

Definition 2.1. An event C in � is said to be the (Reichenbachian) common
cause of the correlation between A and B if the events A, B and C satisfy the
following relations:

p(AB|C) = p(A|C)p(B|C) (2)

p(AB|C) = p(A|C)p(B|C) (3)

p(A|C) > p(A|C) (4)

p(B|C) > p(B|C) (5)

where p(X|Y ) = p(XY )/p(Y ) denotes the conditional probability of X on con-
dition Y,C denotes the complement of C and it is assumed that none of the
probabilities is equal to zero. Equations (2)-(3) are called ”screening-off” prop-
erties since conditioning on C and C, respectively screens off the correlation
between A and B. (4)-(5) express the ”positive statistical relevance” of the cause
C on the two effects A and B, respectively.
What is the situation if the correlation is due not only to a single causal factor but
to a system of different causal effects? In other words, how can the notion of the
Reichenbachian common cause be generalized for situations when more causes
are present? The idea is the following: explaining a correlation by a system of
common causes would mean that one can partition the statistical ensemble into
more than two subensembles in such a manner that (i) the correlation disappears in
each of the subensembles, (ii) any pair of such subensembles behaves like the two
subensembles determined by the pair {C,C} in the Definition 1 of the common
cause. For other motivations of the definition we refer the reader to (Hofer-Szabó
and Rédei, 2004, 2006). A mathematically explicit formulation of this idea is
spelled out in the next definition.

Definition 2.2. Let (�,p) be a probability space and A,B two events in �. The
partition {Ci}i∈I of � is said to be a Reichenbachian common cause system for
the pair (A,B) if for all i, j ∈ I (i �= j ) the following two conditions are satisfied

p(AB|Ci) = p(A|Ci)p(B|Ci) (6)

(p(A|Ci) − p(A|Cj ))(p(B|Ci) − p(B|Cj )) > 0 (7)
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The above definition is a natural generalization of Reichenbach’s original
definition of common cause to the case when more than one single factor con-
tributes to the correlation. The cardinality of the index set I (i.e. the number of
events in the partition) is called the size of the Reichenbachian common cause
system. It is straightforward to see that a Reichanbachian common cause {C,C}
is a Reichenbachian common cause system of size 2.

In what follows we define the notion of exchangeability and use the concept
of the Reichenbachian common cause system for the common-causal explanation
of exchangeable correlations.

3. EXCHANGEABILITY AND IDENTITY
OF CONDITIONAL PROBABILITIES

Definition 3.3. Let (�,p) be a classical probability measure space. A pair
(A,B) of events in � is said to be exchangeable if

p(AB) = p(AB) (8)

Exchangeability was introduced by de Finetti (1938) and came to be the
central notion in the subjectivist account of probability. In their liked coin-tossing
examples exchangeability means that the probability of getting k heads in a se-
quence of n tosses does not depend on which trial heads occured on but it depends
solely on the k number of heads in the sequence. Generally, a set of random
variables is said to be exchangeable if their joint disribution is invariant under
permutations of the sequence of the variables (Jeffrey, 2004). Exchangeability
in subjectivist theories of probability replaces the notion of independence. Sub-
jectivists prefer exchangeability to independence since exchangeability yields a
formal basis to subjectivist account of induction. Laplace’s Rule and other rules
of succession can be backed by exchangeability in the subjectivist framework.

Here we do not commit ourselves to the subjectivist account of probability
but rather we use the notion of exchangeability in a formal way. In Definition 3
we defined exchangeability on the level of the events and measures not on the
level of the distributions of random variables as usual. Exchangeability expresses
a special permutation symmetry between two events: the probability that the one
event occurs and the other event does not occur, does not depend on which event
occurs and which does not. In order to spell out this symmetry consider the
partition {AB,AB,AB,AB} generalized by the events A and B in � and consider
the following vector function on � × �:

fp : � × � −→ R
4; (A,B) �−→ {p(AB), p(AB), p(AB), p(AB)} Now ex-

changeability is the invariance of fp under the S2 permutation A ↔ B, or in other
words, a pair (A,B) of events in (�,p) is exchangeable if fp(A,B) = fp(B,A).
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Physical motivations for exchangeability must be clear from the spin ex-
periment mentioned above. For two-particles system in singlet state with axial
symmetry the outcomes of the measurement of a two-valued observable are ex-
changeable.

Next we connect exchangeability and correlation in a straightforward way:

Definition 3.4. A pair of events A and B in (�,p) is said to be an exchangeable
(positively) correlating pair if the followings hold:

p(AB) > p(A)p(B) (9)

p(AB) = p(AB) (10)

It is easy to see that if (A,B) is an exchangeable correlating pair then p(A) =
p(B).

Now we turn to the question of how to explain exchangeable correlations
if the correlating events do not interact causally. Since the most promising can-
didate for common-cause-type explanation of correlations is the Reichenbachian
common cause system, in what follows, we impose some extra requirements on
the Reichenbachian common cause system such that the common cause system
accounts for the exchangeable character of the correlation.

Suppose A and B are two exchangeable correlating events and suppose that
{Ci}i∈I is a Reichenbachian common cause system that explains the correlation in
the sense that A,B and {Ci}i∈I satisfy (6)-(7). Since exchangeability is an invari-
ance under the permutation A ↔ B it is natural to assume that the exchangeability
of the correlating pair derives from the same type of invariance of the underly-
ing causal structure, namely the invariance of the Reichenbachian common cause
system under the transformation A ↔ B. If the causal source of the correlation
is invariant under the transformation A ↔ B, then the correlation will inherit this
invariance and so the pair (A,B) will be exchangeable.

How can the invariance of the causal source of the correlation under the
transformation A ↔ B be defined? Since in this statistical framework the strenght
of the causal efficiency of the common cause system on the events A and B is
measured by the conditional probabilities p(A|Ci) and p(B|Ci), the invariance of
the causal effect under the transformation A ↔ B simply means that the condi-
tional probabilities p(A|Ci) and p(B|Ci) are identical. This notion of conditional
identity is spelled out in the following definition:

Definition 3.5. Let A,B be two events in (�,p) and let {Ci}i∈I be a partition
of �. Then {Ci}i∈I is said to be a conditionally identical partition with regard to
A and B if for all i ∈ I

p(A|Ci) = p(B|Ci) . (11)
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Conditional identitical partitions are invariant under the transformation A ↔
B. Using Definition 5 now we can define conditionally identical common cause
system as follows:

Definition 3.6. Let (A,B) be a correlating pair of events in a classical probabil-
ity measure space (�,p). Then a partition {Ci}i∈I of � is said to be a conditionally
identical common cause system of the correlation (A,B) if for all {Ci}i∈I the fol-
lowing equations hold:

p(AB|Ci) = p(A|Ci)p(B|Ci) (12)

p(A|Ci) = p(B|Ci) (13)

We call a conditionally identical common cause system proper iff p(A|Ci) �=
p(A|Cj ) for some i �= j . The cardinality of the index set I is called as before the
size of the common cause system.

Definition 6 of the conditionally identical common cause system has to meet
two demands: first, it has to explain the correlation between the events A and B;
second, it has to account for the exchangeability of the pair. Both requirements are
fullfilled. Since (13) implies (7), conditionally identical common cause systems
are Reichenbachian common cause systems, and so they are appropriate tools for
explaining correlations. On the other hand, (13) expresses conditional identity
which—according to our assumption—is responsible for the exchangeability of
the pair (A,B).

Having defined the notion of conditionally identical common cause system
now we can make explicite our assumption mentioned above. This is spelled out
in the following hypothesis:

Hypothesis of Conditionally Identical Probabilities: Exchangeability of a
(causally not interacting) correlating pair derives from a conditionally identical
common cause system.

In the following section we make the Hypothesis of Conditionally Identical
Probabilities more precise and decide on its truth value. In the Conclusions we
return to the metaphysical interpretation of the Hypothesis.

4. CONDITIONALLY IDENTICAL COMMON CAUSE
SYSTEMS AND POSITIVE CORRELATION

The precise content of the Hypothesis of Conditionally Identical Probabilities
can be expressed as follows. Let be (A,B) an exchangeable correlating pair in
a classical probability measure space (�,p). Then a necessary and sufficient
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condition that there exists a proper conditionally identical common cause system
{Ci}i∈I for the pair (A,B) is that there exists a positive correlation between
A and B.

In order to prove necessity we have to show that the existence of a proper
factorizing partition with identical conditional probabilities for an exchangeable
correlating pair (A,B) implies positive correlation between A and B. In order to
prove sufficiency we have to show that if (A,B) is an exchangeable positively
correlating pair in (�,p), then there exists an extension (�′, p′) of (�,p) such
that (�′, p′) contains a proper conditionally identical common cause system of
size n for the correlation of A and B.

These tasks will be accomplished in the following two theorems:

Theorem 4.1. Let A and B be events in a classical probability measure space
(�,p) and let {Ci}i∈I be a partition of �. Furthermore, let (AB) be a conditionally
identical common cause system of the pair (A,B). Then (A,B) is an exchangeable
positively correlating pair.

Proof: First we prove positive correlation, then exchangeability. Since {Ci}i∈I is
a conditionally identical common cause system of the pair (A,B) in (�,p), the
events A,B and {Ci}i∈I satisfy (12)–(13). Using conditional decomposition of the
correlation

Corr(A,B) ≡ p(AB) − p(A)p(B) =
∑

i<j

p(Ci)p(Cj )[p(A|Ci)

−p(A|Cj )][p(B|Ci) − p(B|Cj )]

and Equation (13) we get

Corr(A,B) =
∑

i<j

p(Ci)p(Cj )[p(A|Ci) − p(A|Cj )]2

which is positive for proper factorizing partitions regardless of the values of p(Ci).
So the correlation between A and B will be positive.

Now we turn to the proof of exchangeability. Using (12) and the conditional
decomposition of p(AB) we get

p(AB) =
∑

i

p(Ci)p(A|Ci)p(B|Ci)

Using (13) and substituting p(A|Ci) by p(B|Ci) and p(B|Ci) by p(A|Ci) we get
∑

i

p(Ci)p(B|Ci)p(A|Ci)
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which is just p(AB). Thus a conditionally identical common cause system for a
pair of events implies exchangeability of the pair.

Theorem 4.2. Let A and B exchangeable events in a classical probability mea-
sure space (�,p) and let there be a positive correlation between A and B. Then
for any given n > 2 real number the probability measure space (�,p) can be
extented such that the extension (�′, p′) contains a proper conditionally identical
common cause system of size n for the correlation.

Proof: The proof consists of two steps. In Step 1 we show first that if {Ci}ni=1 is
a conditionally identical common cause system of size n in a probability space
(�,p), then the numbers {p(A|Ci)}ni=1, {p(B|Ci)}ni=1 and {p(Ci)}ni=1 satisfy cer-
tain equations and inequalities. Since the Reichenbachian common cause system
{Ci}i∈I is conditionally identical that is p(A|Ci) = p(B|Ci) for all i = 1 . . . n we
substitute p(B|Ci) by p(A|Ci) in the equations and inequalities and omit those
that become redundant by the substitution. It is then shown that (if the correlation
is not strict) then there exist 2n non-negative real numbers {ai}ni=1 and {ci}ni=1 that
satisfy those equations. We call the numbers {ai}ni=1, {ci}ni=1 admissible numbers
for the correlation Corrp(A,B). Finally we identify the admissible numbers with
the numbers {p(A|Ci) = p(B|Ci)}ni=1 and {p(A|Ci)}ni=1 via

ai = p(A|Ci) = p(B|Ci) i = 1, . . . , n (14)

ci = p(Ci) i = 1, . . . n (15)

In Step 2 we show that, given a non-strict correlation in any probability space and
any n, for any given set of admissible numbers for Corrp(A,B) > 0, there exists
an extension (�′, p′) of (�,p) such that (�′, p′) contains a proper conditionally
identical common cause system of size n in such a way that the admissible
numbers are identified with the corresponding probabilities via (14)–(15). For
a more general result we refer the reader to (Hofer-Szabó and Rédei, 2006).

Step 1 Let {Ci}ni=1(n ≥ 2) be a conditionally identical common cause system in
(�,p) of the correlation Corrp(A,B) > 0.

Using the theorem of total probability and (12)–(13), the probabilities
p(A), p(B) and p(AB) can be written as

p(A) = p(B) =
n∑

i=1

p(A|Ci)p(Ci) (16)

p(AB) =
n∑

i=1

p(A|Ci)
2p(Ci) (17)
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Obviously, one also has

1 =
∑

i

p(Ci) (18)

0 ≤ p(A|Ci) ≤ 1 (i = 1, . . . n) (19)

0 < p(Ci) < 1 (i = 1, . . . n) (20)

Hence the assumption of a conditionally identical common cause system {Ci}ni=1
of the correlation between A and B implies that there exist 2n real numbers
{ai}ni=1, {ci}ni=1 such that with the identifications (14)–(15) the requirements (16)–
(20) hold, i.e. there exist real numbers {ai}ni=1, {ci}ni=1 for which we have

p(A) = p(B) =
n∑

i=1

aici (21)

p(AB) =
n∑

i=1

a2
i ci (22)

1 =
∑

i

ci (23)

0 ≤ ai ≤ 1 (i = 1, . . . n) (24)

0 < ci < 1 (i = 1, . . . n) (25)

Given a correlation Corrp(A,B) > 0 in a probability space (�,p), the set

{ai}ni=1 {ci}ni=1 (26)

of 2n real numbers is called an admissible set for Corrp(A,B) > 0 if (21)–(25)
hold. We now show that given any non-strict correlation Corrp(A,B) > 0 in a
probability space (�,p), and given any n ≥ 2, there exist a set of admissible
numbers for the correlation.

Given a set {ai}ni=1, {ci}ni=1 of real numbers that satisfy (24)–(25), the three
Equations (21)–(23) restrict the number of independent numbers to (2n − 3).
Consider the following (2n − 3) numbers

{ai}n−1
i=1 , {ci}n−2

i=1 (27)

as parameters. A routine calculations shows that, using (21)–(23) the numbers
an, cn and cn−1 can be expressed with the help of parameters (27) as follows:

cn−1 = p(AB) − p(A)2 + Sn−2
k (A) − Dn−2

k (A) + Sn−2(A)

[p(A) − an−1)]2 + p(AB) − p(A) − p(A)2 + An−2
n−1,k

(28)
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cn = 1 −
n−1∑

i=1

ci (29)

an = p(A) − T n−2
k (A) − an−1

1 − Sn−2 − cn−1
+ an−1 (30)

where

Sn−2
j,k (A) = 1

2

n−2∑

j,k=1

cj ck[aj − ak]2

Sn−2
k (A) =

n−2∑

k=1

ck[p(A) − ak]2

Sn−2(A,B) =
n−2∑

k=1

ck[p(AB) − p(A)2)

Sn−2
n−1,k(A) =

n−2∑

k=1

ck[an−1 − ak]2

Sn−2 =
n−2∑

k=1

ck

T n−2
n−1,k(A) =

n−2∑

k=1

ck[an−1 − ak]

It follows that if one can show that one can choose the parameters (27) in such
a way that cn−1, cn, an given by (28)–(30) satisfy (24)–(25), then one has shown
that 2n admissible numbers exist. We show this by induction on n: it is proved
first that non-zero admissible numbers for n = 2 exist, then it is assumed that for
n ≥ 2 2n non-zero admissible numbers exist and then, using a simple continuity
argument, it is shown, that 2(n + 1) admissible numbers exist.

Consider the case n = 2. Let us first define the following domain D ⊆ R:

D = (0, p(B|A)) ∪ (p(B|A), 1) (31)

Since the correlation is not strict, D is not empty. Since n = 2, in this case the
parameter is ai , and all the S’s and T’s are zero, hence (28)–(30) reduce to the
following

c1 = p(AB) − p(A)2

[p(A) − a1)]2 + p(AB) − p(A)2
(32)
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c2 = 1 − c1 (33)

a2 = p(A) − a1

1 − c1
+ a1 (34)

It is straightforward to verify that if a1 is in D, then (24)–(25) are also satisfied.
Thus the parameter 0 < a1 determines an admissible set

{a1, a2, c1, c2} (35)

of non-zero numbers for the correlation Corrp(A,B) > 0 in the case of n = 2.
Let now n > 2 be arbitrary and let us assume (inductive hypothesis) that we

have a set

{ai}ni=1 {ci}ni=1 (36)

of 2n non-zero admissible numbers determined by the following (2n − 3) param-
eters:

{ai}n−1
i=1 , {ci}n−2

i=1 (37)

Since the numbers (37) are non-zero, one can choose two real numbers α, γ such
that

0 < α < ai (i = 1, 2, . . . (n − 1)) (38)

0 < γ < ci (i = 1, 2, . . . (n − 2)) (39)

Consider the following [2(n + 1) − 3] numbers

{ai}n−1
i=1 , α, {ci}n−2

i=1 , γ (40)

and consider them as possible parameters for a set of 2(n + 1) admissible numbers
for the correlation Corrp(A,B) > 0; i.e. substitute the numbers in (40) into (28)–
(30) (with the identifications an = α, cn−1 = γ ) to obtain c′

n, c
′
n+1, a

′
n+1. The 2(n +

1) numbers

{ai}n−1
i=1 , α, α′

n+1; {ci}n−2
i=1 , γ, c′

n, c
′
n+1 (41)

so obtained will satisfy (21)–(23) but they are not necessarily admissible numbers
because the numbers c′

n, c
′
n+1, a

′
n+1 might not satisfy (24)–(25). However, for any n

the formulas (28)–(30) considered as functions of the parameters {ai}n−1
i=1 , {ci}n−2

i=1 ,
are all continuous functions of these parameters; furthermore, it is clear from the
formulas (28)–(30) that if α and γ jointly tend to zero:

(α + γ ) → 0 (42)

then

a′
n+1 → an, c′

n → cn−1, c′
n+1 → cn (43)
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It follows then that for sufficiently small, non-zero α and γ the numbers
c′
n, c

′
n+1, a

′
n+1 will satisfy (24)–(25); consequently, for sufficiently small α

and γ , the numbers (41) are 2(n + 1) admissible numbers for the correlation
Corrp(A,B) > 0.

Step 2 By Stone’s representation theorem of Boolean algebras we may assume
that � is a set of subsets of a set X. Let �i and Xi(i = 1 . . . n) be n identical copies
of � and X, respectively, and for all i = 1 . . . n let hi denote the Boolean algebra
isomorphisms between � and �i . Let X′ = ∪Xi . Let �′ be the set of subsets in
X′ having the form h1(Y1) ∪ · · · ∪ hn(Yn), i.e. define

�′ = {(h1(Y1) ∪ · · · ∪ hn(Y ))|Yi ∈ �(i = 1, . . . n)}

It is routine to verify that �′ is a Boolean algebra of subsets of X′ (with respect to
the set theoretical operations) and that he map h defined by

h : � → �′, X �→ (h1(Y ) ∪ · · · ∪ hn(Y ))

is a Boolean algebra embedding of � into �′.
We now define a measure p′ on �′ in such a way that (�′, p′) becomes an

extension of (�,p). Let rk
i (k = 1, 2, 3, 4; i = 1 . . . n) be 4n real numbers in the

interval [0, 1] such that
∑n

i=1 rk
i = 1 for all k. One can define a p′ measure on �′

by

p′(h1(Y1) ∪ · · · ∪ hn(Yn)) ≡
n∑

i=1

(r1
i p(YiAB) + r2

i p(YiAB + r3
i p(YiAB) + r4

i p(YiAB))

Since AB,AB,AB and AB are disjoint and their union is X it follows that

p′(h1(Y ) ∪ · · · ∪ hn(y)) = p′(h(Y )) = p(Y ) Y ∈ �

Hence (�′, p′) is indeed an extension of the original probability space (�,p).
Let {ai}ni=1, {ci}ni=1 be a set of admissible numbers and choose rk

i as follows:

r1
i = cia

2
i

p(AB)

r2
i = r3

i = ciai[1 − ai]

p(AB)

r4
i = ci[1 − ai)]2

p(AB)

We claim that the following partition in �′ is a Reichenbachian common cause
system of size n for the correlation:

C1 = h1(X) ∪ h2(∅) ∪ . . . ∪ hn(∅)



Hofer-Szabó 1365

C2 = h1(∅) ∪ h2(X) ∪ . . . ∪ hn(∅)

...

Ci = h1(∅) ∪ . . . ∪ hi(X) ∪ . . . ∪ hn(∅)

...

Cn = h1(∅) ∪ . . . ∪ hi(∅) ∪ . . . ∪ hn(X)

To see this one can check by explicit calculation that the followings hold:

p′(h1(∅) ∪ · · · ∪ hi(�) ∪ · · · ∪ h2(∅)) = p′(Ci) = ci (44)

p′(h1(A) ∪ · · · ∪ hn(A)|h1(∅) ∪ · · · ∪ hi(�) ∪ · · · ∪ h2(∅)) = p′(A|Ci) = ai (45)

p′(h1(B) ∪ · · · ∪ hn(B)|h1(∅) ∪ · · · ∪ hi(�) ∪ · · · ∪ h2(∅)) = p′(B|Ci) = ai (46)

Since the admissible numbers have been chosen precisely so that (12) and
(13) are satisfied, {Ci}ni=1 above is indeed a conditionally identical common cause
system of size n in {Ci}ni=1. Thus we have proven the theorem that any classical
probabilistic measure space (�′, p′) can be extended in such a way that the ex-
tension contains a conditionally identical common cause systems of size n for the
non-strict correlation.

5. CONCLUSIONS

The significance of Theorem 1 is straightforward. If for a pair of events
(A,B) there exists a conditionally identical common cause system then the com-
mon cause will result in an exchangeable positive correlation. Thus condition-
ally identical common cause systems are apt tools for explaining exchangeable
correlations.

Theorem 2 argues in the reverse mode. Exchangeable correlations can be
explained by conditionally identical common cause systems by extending the
original algebra of the correlation. Theorem 2 is a special case of a more general
principle which is called Reichenbach’s Common Cause Principle. This prin-
ciple is the claim that correlating events which do not causally interact have
a (Reichenbachian) common cause. In (Hofer-Szabó and Rédei, 1999) it was
proven that Reichenbach’s Common Cause Principle is true on the algebraic
level in the sense that, given a correlation in a classical probability space (�,p),
this probability space can be extended in such a way that the larger space con-
tains a Reichenbachian common cause for the correlation. In (Hofer-Szabó and
Rédei, 2006) this result has been generalized for any Reichenbachian common
cause system in the sense that given a correlation in a classical probability space
(�,p) and given any real number n > 2, (�,p) can be extended in such a way
that the larger space contains a Reichenbachian common cause system of size
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n for the correlation. Theorem 2 is a special case of this theorem since con-
ditionally identical common cause systems are Reichenbachian common cause
systems.

The real content of the Hypothesis of Conditionally Identical Probabilities
lies in the extra assumption of Theorem 2, namely that exchangeability of the
correlating pair derives from the conditional identity of the common cause. Or
expressed in the language of symmetries, the permutation symmetry of the phe-
nomenological level derives from the permutation symmetry of the hidden causal
source. How legitime is this assumption? The answer depends on how much we
expect from a causal explanation.

In the one hand, we might have good reasons to be more modest. Even the
most simple common-causal explanation of the EPR experiment, namely the ex-
planation via factorizing partitions imply Bell’s theorems which contradicts quan-
tum mechanical predictions. Since conditionally identical common cause systems
are Reichenbachian common cause systems and Reichenbachian common cause
systems are factorizing partitions, strengthening the requirements of the causal
explanation is not the right way to account for quantum mechanical correlations.

In the other hand, concluding from spatial or other phenomenological sym-
metries of a system to symmetries of the hidden physical background is a natural
type of reasoning in theoretical physics. The metaphysical reasoning in the Hy-
pothesis of Conditionally Identical Probabilities has similar nature: one concludes
from the symmetry of the explanans to the symmetry of the causal explanandum.
Returning to spin experiment mentioned in the Introduction the axial symme-
try of the whole setup together with the fact that the spin is a two-valued ob-
servable garantees invariance of the joint probability under permutation of the
events which is just exchangeability. The Hypothesis of Conditionally Identical
Probabilities then requires that the same type of invariance has to hold on the
level of the common cause, which means that the common cause system has
to be conditionally identical. If we strive for a full-fledged causal explanation
then the causal explanandum has to account for all the relevant features of the
explanans.
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Hofer-Szabó, G., Rédei, M., and Szabó, L. E. (2002). Common causes are not common common
causes, Philosophy of Science 69, 623–633.
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